A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy

نویسندگان

  • Luc HAINE
  • Didier VANDERSTICHELEN
چکیده

We show that the (semi-infinite) Ablowitz–Ladik (AL) hierarchy admits a centerless Virasoro algebra of master symmetries in the sense of Fuchssteiner [Progr. Theoret. Phys. 70 (1983), 1508–1522]. An explicit expression for these symmetries is given in terms of a slight generalization of the Cantero, Moral and Velázquez (CMV) matrices [Linear Algebra Appl. 362 (2003), 29–56] and their action on the tau-functions of the hierarchy is described. The use of the CMV matrices turns out to be crucial for obtaining a Lax pair representation of the master symmetries. The AL hierarchy seems to be the first example of an integrable hierarchy which admits a full centerless Virasoro algebra of master symmetries, in contrast with the Toda lattice and Korteweg–de Vries hierarchies which possess only “half of” a Virasoro algebra of master symmetries, as explained in Adler and van Moerbeke [Duke Math. J. 80 (1995), 863–911], Damianou [Lett. Math. Phys. 20 (1990), 101–112] and Magri and Zubelli [Comm. Math. Phys. 141 (1991), 329–351].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix biorthogonal polynomials on the unit circle and non-abelian Ablowitz-Ladik hierarchy

In [13] Adler and van Moerbeke described a reduction of 2D-Toda hierarchy called Toeplitz lattice. This hierarchy turns out to be equivalent to the one originally described by Ablowitz and Ladik [1] using semidiscrete zero-curvature equations. In this paper we obtain the original semidiscrete zero-curvature equations starting directly from the Toeplitz lattice and we generalize these computatio...

متن کامل

Virasoro Symmetry Algebra of Dirac Soliton Hierarchy

A hierarchy of first-degree time-dependent symmetries is proposed for Dirac soliton hierarchy and their commutator relations with time-dependent symmetries are exhibited. Meantime, a hereditary structure of Dirac soliton hierarchy is elucidated and a Lax operator algebra associated with Virasoro symmetry algebra is given. The main purpose of the present letter is to construct a hierarchy of fir...

متن کامل

Local Conservation Laws and the Hamiltonian Formalism for the Ablowitz–ladik Hierarchy

We derive a systematic and recursive approach to local conservation laws and the Hamiltonian formalism for the Ablowitz–Ladik (AL) hierarchy. Our methods rely on a recursive approach to the AL hierarchy using Laurent polynomials and on asymptotic expansions of the Green’s function of the AL Lax operator, a five-diagonal finite difference operator.

متن کامل

Integrable structure of modified melting crystal model

Our previous work on a hidden integrable structure of the melting crystal model (the U(1) Nekrasov function) is extended to a modified crystal model. As in the previous case, “shift symmetries” of a quantum torus algebra plays a central role. With the aid of these algebraic relations, the partition function of the modified model is shown to be a tau function of the 2D Toda hierarchy. We conject...

متن کامل

Fractional Superspace Formulation of Generalized Super-Virasoro Algebras

We present a fractional superspace formulation of the centerless parasuper-Virasoro and fractional super-Virasoro algebras. These are two different generalizations of the ordinary super-Virasoro algebra generated by the infinitesimal diffeomorphisms of the superline. We work on the fractional superline parametrized by t and θ, with t a real coordinate and θ a paragrassmann variable of order M a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013